
An Adaptive Windowed Approach for Frequency Estimation in Power Systems 

Chen Zhang1,a, Xiang Yu1,b, Jie Xu2,c, Zhe Li2,d 
1State Grid Jiangsu Electric Power Co. Ltd, Yangzhou Power Supply Company, Yangzhou, China 

2School of Information Science and Engineering, Southeast University, Nanjing, China 
ayzzcjsepc@163.com,bjsepc_yux@126.com,cjackxu@seu.edu.cn,dlizhe_nanjing@seu.edu.cn

Keywords: Frequency estimation, least-mean-square, three-phase power system, harmonic 
distortion, noisy environment 

Abstract: A novel technique for online estimation of the fundamental frequency of power system in 
both the single-phase and three-phase cases is proposed. This is achieved based on the consideration 
of the relationship between the samples within every three consecutive sliding windows, and the use 
of an adaptive filter trained by the least mean square (LMS) algorithm. The evolution of the 
adaptive weight coefficient within the adaptive filter is used to estimate the system frequency in a 
recursive and robust manner. Compared with the original work which employs the Wiener filtering 
approach, the proposed method alleviates the drawbacks of Wiener filtering, such as sensitivity to 
noise and harmonics, at a cost of convergence time. Simulations in both benchmark synthetic cases 
and for real-world scenarios support the analysis. 

1. Introduction 
Accurate frequency estimation in the power system is a key power quality parameter. Its 

importance has become even more emphasized owing to the trends for electricity industry 
deregulation [1], and the subsequent penetration of distributed generation into the power grid [2], 
[3], where the frequency variations occur as a consequence of the dynamic unbalance between the 
generation and the load. A system frequency that is lower than the nominal value indicates an over-
loaded power system, while a frequency higher than the nominal value implies more generation 
than the connected load [4]. 

To deal with these issues in a timely and efficient way, fast and accurate frequency estimation 
has attracted much attention. A variety of architectures and algorithms have been developed for this 
purpose, including zero crossing techniques [1], [5], discrete Fourier transform (DFT) based 
algorithms [6], [7], phase-locked loops (PLL) [8], [9], least-squares based adaptive filters [4], [10]–
[12], and Kalman filters [13], [14]. The lack of robustness to noise and harmonics associated with 
standard techniques can be attributed to both “single point estimates” in many current algorithms, 
sensitivity due to the feedback loop in PLL, and the inability to produce correct estimates over short 
data segments and during transients of DFT based methods. In addition, very few current methods 
are well equipped to deal with unbalanced system conditions. 

Of particular interest to this work are techniques that benefit from the mathematical advantages 
provided by employing a relation between the information available in consecutive data samples 
[15]–[17]. Recently, a new algorithm that employs a sliding window over several successive 
samples has been proposed in [18], and has been shown to exhibit enhanced robustness as compared 
with the signal point frequency estimators. Based on a neat mathematical modeling of the relation 
between three successive data windows, the instantaneous frequency is extracted using the Wiener 
filter. Compared with traditional methods based on joint modeling of consecutive samples [16], this 
algorithm can be considered a generic extension from a scalar into a vector windowed form, where 
more available observations are involved in the calculation, enable this method to outperform its 
scalar counterpart. However, the main drawback, inherited from the limitations of Wiener filtering, 
remains its sensitivity to noise and harmonics. 
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To this end, we here present an adaptive windowed algo-rithm based on the least-mean-square 
(LMS) adaptive filter, in order to recursively estimate the mathematical relation between the three 
consecutive moving windows of data samples, whereby the instantaneous frequency is estimated 
from the associated weight coefficient. This provides additional flexibility in the estimation, 
robustness to harmonics and noise, and the ability to operate in unbalanced system conditions, 
where the Wiener filter based approaches fail. The proposed method also offers computational 
advantages, as Wiener filters are based on a matrix inversion of potentially ill-conditioned 
correlation matrices, causing serious stability issues. 

2. An optimal windowed approach 
Consider a discrete time voltage signal, given by 

( ) ( )cos Tv k A kω φ= ∆ +  (1) 

where A  is the peak value of the voltage ( )v k , k  time instant, T 1/ sf∆ =  sampling interval, sf  
sampling frequency, φ  phase of fundamental component, and 2 fω π=  the angular frequency, with 
f  being the system frequency to be estimated. 

In a similar way, the previous and following time instants, ( )1v k −  and ( )1v k + , are represented 
as 

( ) ( )( )1 cos 1 Tv k A kω φ− = − ∆ +  (2) 

( ) ( )( )1 cos 1 Tv k A kω φ+ = + ∆ +  (3) 

and can be further expanded into 

( ) ( )
( ) ( ) ( ) ( )

1 cos T T

cos T cos T sin T sin T

v k A k

A k A k

ω φ ω

ω φ ω ω φ ω

− = ∆ + − ∆

= ∆ + ∆ + ∆ + ∆
(4) 

and 

( ) ( )
( ) ( ) ( ) ( )

1 cos T T

cos T cos T sin T sin T

v k A k

A k A k

ω φ ω

ω φ ω ω φ ω

+ = ∆ + + ∆

= ∆ + ∆ − ∆ + ∆
(5) 

A relationship connecting the three consecutive voltage sam-ples can be obtained by adding (4) 
and (5) to give [18] 

( ) ( ) ( ) ( )
( ) ( )

1 1 2 cos T cos T

2 cos T

v k v k A k

v k

ω φ ω

ω

− + + = ∆ + ∆

= ∆
 (6) 

The instantaneous frequency can now be estimated as 

( ) ( ) ( )
( )

1 1 1ˆ cos
2 2

s v k v kf
f k

v kπ
−  − + +

=   
 

 (7) 

Despite the elegant and closed form, a direct usage of (7) causes several problems. First, the 
frequency estimate ( )f̂ k  depends on only three samples, making it very sensitive to noise and 
harmonics, and a filtering pre-conditioning scheme is necessary as a preprocessing step when the 
voltage signal is contaminated by harmonics. Second, large estimation errors may be obtained when 
the sample ( )v k  is in a region near the zero crossing, a case even more emphasized when the 
sampling frequency sf  is high. 

To help to deal with these deficiencies, a moving window scheme, proposed in [18], recognizes 
that the relationship among the scalars ( ) ( ) ( ){ }1 , , 1v k v k v k− +  in (6) holds at each time instant k, and 
the algorithm considers three windows of multiple samples with length ( )2 1L + , where 
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( ) ( ) ( ){ }1 , , 1v k v k v k− +  are at the window center, so that 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
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 

 

 

 (8) 

This way, the following vector-valued version of (6) holds 

( ) ( ) ( ) ( )
1 1

cos T
2

k k
k ω

− + +
= ∆

v v
v  (9) 

In [18], a Wiener filtering approach [19] was employed to obtain a least-squares estimate of 
( )cos Tω∆ , that is 

( )
( ) ( ) ( )( )

( ) ( )
1 1

ˆcos T
2

T

T

k k k
k k

ω
− + +

∆ =
v v v

v v
 (10) 

from which the system frequency is estimated as 

( ) ( ) ( ) ( )
( ) ( )

1 1 1ˆ cos
2 2

T
s

T

k k kf
f k

k kπ
−  − + +

=   
 

v v v
v v  (11) 

Observe that an accurate computation of the inverse cosine function in (11) has disadvantages in 
practical implementation of the algorithm, from a time-consuming calculation to enhanced 
sensitivity in certain regions of the voltage waveform due to ( )v k  being in the denominator of (7). 
One way to overcome this shortcoming is to use the Taylor series expansion of (9), resulting in a 
reduced estimation accuracy but a much more mathematically tractable expression. In this light, 
consider the frequency ω  in terms of an instantaneous change ω∆  around its nominal value 0ω ; 
then (9) can be expanded as 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
0

0

1 1
cos T cos T

2
sin T sin T

k k
k

k

ω ω

ω ω

− + +
= ∆ ∆ ∆

− ∆ ∆ ∆

v v
v

v
 (12) 

Since in practical applications the frequency ω  does not deviate significantly from its nominal 
value 0 2 50Hzω π= , and in standard systems, T 1/ sf∆ =  is very small, the corresponding first order 
Taylor series approximations gives ( )cos T 1ω∆ ∆ ≈  and ( )sin T Tω ω∆ ∆ ≈ ∆ ∆ , so that 

( ) ( ) ( ) ( ) ( )0 0

1 1
cos T Tsin T

2
k k

k ω ω ω
− + +

≈ ∆ −∆ ∆ ∆  
v v

v (13) 

Given that 0 02 fω π= , 2 fω π∆ = ∆  and 0sf Nf= , this allows us to write 

( ) ( ) ( ) ( )1 1a b k k k k f− − − + = ∆  v v v v  (14) 

where ( )( )/ 4 sin 2 /sa f Nπ π= , and ( )2cos 2 /b Nπ= . A Wiener filtering solution to this equation 
results in the estimate of the deviation f∆ , as given in [18] 

( ) ( ) ( ) ( ) ( )
( ) ( )

1 1ˆ T
T

bv k k k
f k a k

k k
− − − +

∆ =
v v

v
v v  (15) 

allowing us to arrive at the system frequency estimate in the form 

( ) ( )0
ˆ ˆf k f f k= + ∆  (16) 
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3. The proposed adaptive windowed approach 
Wiener filtering is a back approach which involves the calculation of matrix inverse, and is thus 

sensitive to noise and harmonics. In addition, in its block calculation, the filter weights are kept 
fixed, making such an approach ill equipped with the need to operate in unbalanced system 
conditions and in the presence of transients and random disturbances. To deal with these issues, we 
here employ the least mean square (LMS) algorithm, widely used in adaptive signal processing 
applications. We show that the evolution of the corresponding weight coefficient can be used to 
estimate the system fre-quency recursively and in real time, while at the same time giving unbiased 
estimates. In the context of adaptive filtering, the right hand side of (14) can be estimated by a 
linear model, where 

( ) ( ) ( )k k w k=y v  (17) 

where ( )ky  is the filter output, and ( )w k  is the filter weight (coefficient) at time instant k . The 
estimation error ( )ke  and the cost function ( )k  can be respectively defined as 

( ) ( ) ( ) ( )( ) ( )1 1k a b k k k k= − − − + −e v v v y  (18) 

( ) ( ) ( )1
2

Tk k k= e e  (19) 

where ( ) ( ) ( )( )1 1a b k k k− − − +v v v  serves as the desired signal that we wish to estimate. The 
weight update of the adaptive coefficient ( )w k  can be obtained using a steepest descent approach as 

( ) ( ) ( )1 ww k w k kµ+ = − ∇  (20) 

where µ  is the step-size that controls the trade-off between the convergence speed and steady-
state estimation error variance [19]. The gradient in (20) can be derived in the form 

( ) ( ) ( )
( )

( )
( ) ( )

( ) ( )
( ) ( ) ( )

1
2

T

T

T T

k k
k k k

k k

k
k k k

w k

 ∂ ∂
= +   ∂ ∂ 

∂
= − = −

∂

e e
e e

w w

y
e e v



 (21) 

Hence, the recursive weight update takes the form 

( ) ( ) ( ) ( )1 Tw k w k k kµ+ = + e v  (22) 

and the estimated transient frequency and the instantaneous system frequency are calculated as 

( ) ( )f̂ k w k∆ =  (23) 

( ) ( )0
ˆ ˆf k f f k= + ∆  (24) 

The stability of such a closed-loop adaptive system based on the windowed-LMS is addressed in 
Appendix A. Note that the proposed windowed LMS scheme is not limited to the voltage modeling 
based on (6), it can be applied to extend any frequency estimation method which uses relationships 
between consecutive voltage samples based on a pure sinusoidal signal model, such as those in [4], 
[11], [20], [21]. 

A Three-Phase Windowed LMS Approach. In a three-phase power system, if line-to-line 
voltages are considered, no single-phase frequency estimation method adequately characterizes 
system frequency, because up to six different single-phase voltage signals may exist [22]. There-
fore, an optimal solution would be based on a framework which simultaneously considers all the 
three-phase voltages, thus enabling a unified estimation of system frequency as a whole, and 
providing enhanced robustness. To this end, we extend the proposed Windowed LMS approach to 
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cater for the system frequency estimation in a three-phase power system. Consider the following 
three-phase power system 

( ) ( ) ( )

( ) ( )

( ) ( )

cos T

2cos T
3

2cos T
3

a a

b b

c c

v k V k k

v k V k k

v k V k k

ω φ

πω φ

πω φ

= ∆ +

 = ∆ + − 
 
 = ∆ + + 
 

 (25) 

where ( ) ( ) ( ), ,a b cV k V k V k  are the peak values of each funda-mental voltage component, and the 
remaining parameters are as defined in Section II. We now introduce a composite sliding window 
which compromises 2 1L +  consecutive samples in all the three phases as: 

( ) ( ) ( ) ( )3p , ,
TT T T

a b ck k k k =  v v v v  (26) 

It therefore still holds that 

( ) ( ) ( ) ( )3p 3p
3p

1 1
cos T

2
k k

k ω
− + +

= ∆
v v

v  (27) 

Similarly to the analysis in Section II, using the first order Taylor series approximation, we 
arrive at 

( ) ( ) ( )( ) ( )3p 3p 3p 3p 3p1 1a b k k k k f− − − + = ∆v v v v  

and the corresponding windowed LMS algorithm for the estimation of the system frequency can 
be summarized as 

( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )

( )
( )

( ) ( ) ( ) ( )

3p 3p

3p 3p 3p

3p 3p

3p 0 3p

3p 3p 3p 3p

1 1

ˆ

ˆ ˆ

1 T

k k w k

k a b k k k k

f w k

f k f f

w k w k k kµ

=

= − − − + −

∆ =

= + ∆

+ = +

y v

e v v v y

e v

 (28) 

Note that the filter length of the windowed LMS in the three-phase case is three times that of the 
windowed LMS in a single phase case. Following the stability analysis in Appendix A, when the 
three-phase power system is in its normal operation, that is, 2 2 2 2

a b cv v v vσ σ σ σ= = = , the range of 3-phaseµ  
that guarantees the stability is given by 

( )3p 2

20
3 2 1 vL

µ
σ

< <
+  (29) 

4. Simulations 
To illustrate the benefits of the proposed windowed LMS method in both the single-phase and 

three-phase cases, com-pared with the Winer filtering solution, simulations for several typical 
power system operating conditions were conducted in the Matlab programming environment. The 
step-size of a one-phase LMS was set to µ = 0.02. Owing to the fact that the effective filter length 
of a three-phase LMS is three times that of the one-phase LMS, to make a fair comparison, the step-
size of three-phase LMS was set to a third of µ. The performances of all the algorithms were 
quantified by the mean square error (MSE) in dB, defined as 

( ) ( )( )2

10 01
ˆMSE dB 10log /K

k
f f k K

=
 = − 
 ∑  (30) 

where the MSE is evaluated over 0.5 sec. The simulated power system was in its normal 
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operating condition at 50 Hz, with a balanced three-phase voltages with unity magnitudes. 

4.1 Synthetic Benchmark Cases. 
In the first set of simulations, we considered the perfor-mance in a noisy environment with the 

signal to noise ratio (SNR) = 60 dB. Fig. 1 illustrates the estimation performances, with the three-
phase voltages sampled at 1000Hzsf =  and the widow size of 2 1 3L + = . Due to the adaptive nature of 
LMS algorithms, both needed around 0.15 sec to converge, whereas the Wiener filtering solutions 
(being calculated backwards) obtained instantaneously frequency estimates but were not able to 
provide optimal estimates in the noisy environment as illustrated by a large variability of the 
estimate throughout the time segment considered. The robustness of LMS approaches against noise 
can be observed at the steady state, after convergence, e.g. after 0.15 sec. Fig. 2 illustrates the 
estimated MSEs of all the algorithms against different levels of white Gaussian noise. The 
windowed LMS solutions exhibited improved performance over the Winer based solutions by 
around 40 dB and 30 dB, respectively, for high SNR and smaller but significant improvement for 
low SNR. The 3-phase windowed LMS maintained around 5 dB improvement as compared with its 
1-phase counterpart in the high SNR region, however, this advantage reduced when the SNR was 
below 40 dB. 

Fig. 3 illustrates the impact of the sampling frequency sf  on the estimation performance of all 
the algorithms investigated. Observe that, when sf  increases, MSEs grows monotonically in both 
noise-free and noisy cases, however, the advantage of windowed LMS over Wiener filtering was 
always maintained. 

 
Fig. 1. Frequency estimation in noisy conditions with SNR=60 dB. 

 
Fig. 2. Frequency estimation performance of all the algorithms under different noise levels, 

obtained by averaging 500 independent trials. 
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Fig. 3. Effect of the sampling frequency fs on the MSEs of all algorithms, for a data window size of 

2L+1 = 7. (a) noise-free case (b) SNR=60 dB. 

 
Fig. 4. Frequency estimation of all the algorithms with a data window size of 2L+ 1 = 5 on the 

distorted power system with harmonics 

 
Fig. 5. Frequency estimation performance of all the algorithms for the case of the system frequency 

rise at a rate of 5 Hz/sec. 
In the next set of simulations, we addressed the sensitivity of the frequency estimation 

algorithms to higher order harmon-ics. When the voltage is contaminated with harmonics, the 
estimated frequency is subject to an unavoidable oscillatory steady-state error. This is because the 
relationship between three consecutive voltage samples, expressed in (6), does not hold when the 
harmonics are also involved, especially affecting those frequency estimation algorithms for which 
the relationship between samples is based on a pure sinusoidal signal model [4]. To mitigate this 
problem, signal prefiltering is usually performed. The distorted power system considered here was 
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contaminated by a 20% third and fifth harmonic, respectively, and a 6th order bandpass FIR filter 
with cutoff frequencies of 20 Hz and 90 Hz was used to preprocess the voltages. Fig. 4 illustrates 
the steady-state performance of all the algorithms in this scenario. Even when the prefiltering was 
performed, harmonic distortion deteriorated the performance of the 1-phase Wiener filtering 
approach. On the other hand, both the 1-phase windowed LMS and 3-phase Wiener filtering 
approach obtained acceptable performance, with the MSEs of 

 
(a) Time series of the real-world balanced three-phase voltages. 

 
(b) Frequency estimation of all the algorithms for a data window size of 2L+1=9. 
Fig. 6. Frequency estimation for a real-world balanced three-phase power system. 

-35.2083 dB and -31.9184 dB respectively. The 3-phase  windowed LMS achieved the best 
estimation performance at a -52.5127 dB MSE conforming with the analysis, and the estimated 
frequency was within the range between 49.998 Hz and 50.004 Hz. 

Fig. 5 shows the frequency tracking abilities of all the algorithms studied, where the 50 Hz 
fundamental frequency of the three-phase power system underwent a rise at a rate of 5 Hz/s. A 
portion of the estimation results between 0.475 sec and 0.5 sec shows the windowed LMS methods 
approaching the reference frequency more closely as compared with Wiener filtering methods. 

4.2 Real World Case Studies. 
In the last set of simulations, real-world measurements were considered. The three-phase 

voltages were recorded at 110/20/10 kV transformer stations. The REL 531 numerical line distant 
protection terminal, produced by ABB Ltd., was installed in the station and was used to monitor 
changes in the three “phase-ground” voltages. The measured three “phase-ground” voltages with a 
system frequency of 50 Hz were sam-pled at 1 kHz and were normalized with respect to their 
normal peak voltage values. The first investigated power system was in a normal operation, and the 
balanced time-series of the three-phase voltages are shown in Fig. 6(a), the estimation results of the 
discussed algorithms with a data window size 2 1 9L + =  is shown in Fig. 6(b). Both the 1-phase and 
3-phase windowed LMS approaches achieved higher estimation accuracy in the steady state, as 
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compared with their Wiener filter counterparts, at an acceptable cost of 0.06 sec needed to converge, 
and the advantage of simultaneous consideration of three-phase voltages over single phase 
approaches can be observed through low variability of frequency estimates. The second investigated 
power system was in an unbalanced operation, where the phase voltage bv  experienced a short 
circuit with earth, causing the voltage to drop to 71.38% of its normal value, and at the same time, 
24.38% and 11.85% voltage swells on av  and cv  respectively, as illustrated in Fig. 7(a). The 
robustness of the proposed windowed approaches against the standard ones in unbalanced 
conditions can be observed in Fig. 7(b). 

 
(a) Time-series of the real-world unbalanced three-phase voltages. 

 
(b) Frequency estimation of all the algorithms for a data window size of 2L+1=9. 

Fig. 7. Frequency estimation for a real-world unbalanced three-phase power system 

5. Conclusions 
We have introduced an adaptive windowed least mean square (LMS) method for frequency 

estimation in both the 1-phase and 3-phase power systems. The evolution of the filter weight 
coefficient within the windowed LMS is used to estimate the system frequency in a recursive and 
real-time manner. The advantages of the proposed methods over the original Wiener filtering 
approaches have been illuminated over a range of power system conditions, such as in the pres-ence 
of noise, harmonic distortion, frequency variation, and for real-world measurements on both 
balanced and unbalanced power systems. 

Appendix A 
This appendix outlines the theoretical stability analysis of the proposed windowed LMS 

frequency estimator. For this purpose, we consider the linear estimate of the desired signal via an 
adaptive filter in the form 
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( ) ( ) ( )( ) ( ) o1 1a b k k k k w− − − + =v v v v  (31) 

where ow  is the optimal weight coefficient. Following the analysis in [19], [23], we define the 
weight error coefficient as ( ) ( )ow k w w k= − . The evolution of the weight error coefficient can be 
analyzed based on (20) as 

( ) ( ) ( ) ( )1 Tw k w k k kµ+ = − e v   (32) 

where the filter output error 

( ) ( ) ( ) ( )( ) ( )
( ) ( )( ) ( ) ( )o

1 1k a b k k k k

k w w k k w k

= − − − + −

= − =

e v v v y

v v 

 (33) 

Substituting (33) into (32) gives 

( ) ( ) ( )( ) ( )1 1 Tw k k k w kµ+ = − v v   (34) 

Upon taking the statistical expectation, to achieve the stability of the proposed algorithm in the 
sense of convergence in the mean, we need to ensure that ( ) ( )1w k w k+ <  , which gives 

( ) ( )1 1TE k kµ  − < v v  (35) 

Note that 

( ) ( ) ( ) 22 1T
vE k k L σ  = + v v (36) 

where 2
vσ  is the variance of ( )v k , giving the bound on the step-size in the form 

( ) 2

20
2 1 vL

µ
σ

< <
+  (37) 
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